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A Big Tip of the Hat to:

Jonathan Yedidia, William Freeman,
and Yair Weiss, the authors of

“Bethe Free Enerqy, Kikuchi Approximations,
and Belief Propagation Algorithms,”

which inspired this paper.



Our Goals:

e To understand existing iterative (decoding or otherwise)
algorithms better. In particular, what happens when there
are cycles in the underlying graph?

e To use this understanding to design new and improved
iterative algorithms.



A General Probabilistic Inference Problem

e Variables {z1,...,2,}, z; € A={0,1,...,q— 1}.
e R ={R1,..., R}, acollection of subsets of {1,2,...,n}.
e A set of nonnegative “local kernels” {agr(xr): R € R}.

e Example: n =4 and R = {{1,2},{2,3},{3,4},{1,4}}.
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A General Probabilistic Inference Problem

e Define the “global” probability density function;
1
p(z) =~ 1] ar(zr).

(Z = Global normalization constant).

Problem: Compute, exactly or approrimately, Z and some
or all of the local marginal densities of the global density:

Pr(TR) = Z p(x), for RER

T Rc QARC



Solution: Belief Propagation on Junction Graphs

Junction Graphs G = (V, E, L).
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The subgraph induced by any index 1 € {1,2,...,n} is a tree.




Junction Graphs for Solving the Inference Problem

e A junction graph (V, E, L) is called a junction graph for
R if R = the labels of V.
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is a junction graph for {{1,2},{2,3},{3,4}, {1,4}}.

e Eixample:

o [t is always possible to find a junction graph (but not nec-
essarily a junction tree) for R.



Belief Propagation on Junction Graphs: the GDL
A B
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Example message:

mB,C(xfs) — KZ 04{2,3}(@, 5133)mA,B(5132)-

X2



Belief Propagation on Junction Graphs
A B
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Example “belief” (approximate marginal density):

1
50(373,5134) A Z—C@{3,4}($37$4)mB,C($3)mD,C(374)



Belief Propagation on Junction Graphs

Theorem. If G is a tree (has no cycles), then

by (wL(v)) = PL(v) (wL(v))

After a finite number of steps. (In other words, the beliefs
converge to the exact desired local marginal probabilities. )

But what if G has cycles?



And Now, for Something Completely Different ...




Some statistical physics

e S={s1,...,8,} = n identical particles.
e “Spin” of s;, =x; € A={0,1,...,q—1}.

® E(ZBl, .

., Tn) = energy of state = (x1, 2o, ...



(Helmholtz) Free Energy

e Partition function:

Z(B)= Y e PP@ =T
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e ['ree energy:

1

F(B) = 3 In Z(3).

“All macroscopic thermodynamaic properties follow from dif-
ferentiating the free energy.”

e We will take 5 = 1.



Variational Free Energy (6 =1)

e p(x) = Prob. of state x.
o Average energy: U = ) _ .. p(x)E(x).
e Entropy: H = —» 4. p(x)Inp(x).

e Variational free energy:

F(p)=U — H.



A Famous Theorem from Statistical Mechanics

Theorem. N

F(p) > F,
with equality if and only if

1
p(z) =p°(x) = Ee_E(m),
the Boltzmann, or equilibrium, density.
Corollary.
F = min F(p)
p(x)
pP () = arg min F(p).

p(x)

e Suggests a method for computing F', but ...



The “Mean Field” Approximation

Fap = min{F(p) : p(a) = p1(z1)p2(w2) - .. pu(2a)}-

e In general, Fyyp > F', but ...

e Feynman used this method successfully in 1955 in his pa-
per on the polaron.

e Its use by physicists is widespread

e Too crude for our purposes



Beyond the Mean Field: N
The Bethe-Kikuchi Approximation to F'(p)

e Often F(x) decomposes:

X1 X2

X4 X3

E(xy,x0,23,14) =
Fro(x1,22) + Eas(w2,x3) + E3 4(z3,24) + E1 a(21, 24).

Y

e In general,

E(x)= Y Egr(zr).



If £(x) decomposes, p?(x) factors

1
General E(x) = p”(x) = EQ—E(CB)

1 — T
E(m) = Z ER(,’L'R) — pB({I;) — E H e Er(zr)
ReER ReR



If £(x) decomposes, p?(x) factors

1
General E(x) = p”(x) = EQ—E(CB)

ReR ReR



X1 X2

Assuming E(x) = ) . Er(TRr)

X4 X3

F(p)=U — H.

e In this case the average energy decomposes:
U=2_Ur
R

where

Ur = Z]?R(wR)ER(CL‘R)-

LR
E.g. U = U1’2 —+ U2,3 —+ U3,4 -+ U1,4.

Thus U depends only on the marginals pr(xr), and not on
the global p(x).



X1 X2

Assuming E(x) = ) . Er(TRr)

X4 X3
e What about H(X1,...,X,)? Does it depend only on the
marginals {pr(xr)}? NO, but ...

Theorem. If G = (V, FE, L) is a junction tree for R, then
at Boltzmann equilibrium (the global density):

H(X) — ZH<X’U) — ZH(X6)°

veV ec
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Example when there are cycles:

(?

H(X1, X2, X5, X4) =
H(X1,X5) + H(X2, X3) + H(X3, X4) + H(X1, X4)
—H(X1) — H(X2) — H(X3) — H(Xy).

No, but it may be a good approximation. (In essence, this
is the BK approximation.)



The “Bethe-Kikuchi” Approximation to F (p)
With Respect to a Junction Graph G = (V, E, L) for R

ﬁBK Z UL(”U) Pv) (Z H(p,) Z H(pe)>

veV veV ecl

= ﬁBK({pmpe})-

e The BK approximation to the free energy:

Fpig = min ﬁBK({pmpe}) ~ F
{Pv,pe}

e The BK approximation to the optimizing “beliefs:”

{pf » Pe K} — alrg min FBK({pvype})
{Pv,pe}
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Fpg = min FBK({pvape})a
{pfu’pe}

Example:

subject to:

me(il?l, 5132) — p1($1)
L2
ZP1,4(CIJ1, $4) — p1($1)
L4

ZPl(%) =1



The Main Result

Theorem. Given an instance BP on a junction graph
G = (V, E, L), define a corresponding “statistical mechanics

problem” via
Er(zr) = —logagr(zr).

Then if G is a tree, the unique fixed point {b,,b.} of BP is
the unique global minimum of Fgg (which is convex); and
if G has cycles,

Any fixed point of the BP algorithm is a station-
ary point* of g with respect to the same junction
graph, and vice-versa.

* Conjecturally, a local minimum if the fixed point is stable.



Proof:

e Set up a Lagrangian:

L= ﬁBK({bvv be})

T Z Z )\UW(:EL(U’”U)) Z bv(wL(v))_be(wL(u,v))

(w,V)EFE L (u,v) TL(u)\L(u,v)
- E oo 5 bv(wL(v)) —1
veV LL(v)

=+ Z He Z be(wL(e)) — 1

GEE wL(e)



Proof:

oL N
o Set RV 0:
logbv(wL(U))—k —EL(U) wL Z )\vu wLuv)
ueN (v)
oL _
® Set 55 @y ) =

logbe(@L(e)) = ke = Av.u(@Le)) = Mo (TL(e))



Proof:

e Now use the “translation”
E’U(wL(’U)) = —In QL (v) (wL(v))
)\v,u(mL(fu,u)) = —In mu,v(wL(u,fu))a

e With this translation, the stationarity conditions for F BEK
are identical to the BP update rules. =



Conclusions:

e Even when cycles are present, BP on a junction graph
does something “sensible.” (Beliefs converge to a station-
ary point of the BK approximations to the true marginal
probabilities.)

o If G is a tree, or has only one cycle, Fgg is convex.

e The junction graph methodology suggests many variations
of BP for a given set of local kernels. ([],_, m/"* junction
graphs.)

e This may permit good BP decoding where conventional
BP fails (e.g. low-rate RA codes).



