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A Big Tip of the Hat to:

Jonathan Yedidia, William Freeman,
and Yair Weiss, the authors of

“Bethe Free Energy, Kikuchi Approximations,
and Belief Propagation Algorithms,”

which inspired this paper.



Our Goals:

• To understand existing iterative (decoding or otherwise)
algorithms better. In particular, what happens when there
are cycles in the underlying graph?

• To use this understanding to design new and improved
iterative algorithms.



A General Probabilistic Inference Problem

• Variables {x1, . . . , xn}, xi ∈ A = {0, 1, . . . , q − 1}.
• R = {R1, . . . , RM}, a collection of subsets of {1, 2, . . . , n}.
• A set of nonnegative “local kernels” {αR(xR) : R ∈ R}.

• Example: n = 4 and R = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}.

α{1,2}(x1, x2) ≥ 0

α{2,3}(x2, x3) ≥ 0

α{3,4}(x3, x4) ≥ 0

α{1,4}(x1, x4) ≥ 0



A General Probabilistic Inference Problem

• Define the “global” probability density function;

p(x) =
1
Z

∏

R∈R
αR(xR).

(Z = Global normalization constant).

Problem: Compute, exactly or approximately, Z and some
or all of the local marginal densities of the global density:

pR(xR) =
∑

xRc∈ARc

p(x), for R ∈ R



Solution: Belief Propagation on Junction Graphs

Junction Graphs G = (V, E, L).
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The subgraph induced by any index i ∈ {1, 2, . . . , n} is a tree.



Junction Graphs for Solving the Inference Problem

• A junction graph (V, E, L) is called a junction graph for
R if R = the labels of V .

• Example:
1 2 2 32

3 41 4

1 3

4

is a junction graph for {{1, 2}, {2, 3}, {3, 4}, {1, 4}}.

• It is always possible to find a junction graph (but not nec-
essarily a junction tree) for R.



Belief Propagation on Junction Graphs: the GDL
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Example message:

mB,C(x3) ← K
∑

x2

α{2,3}(x2, x3)mA,B(x2).



Belief Propagation on Junction Graphs
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Example “belief” (approximate marginal density):

bC(x3, x4) ←
1

ZC
α{3,4}(x3, x4)mB,C(x3)mD,C(x4)



Belief Propagation on Junction Graphs

Theorem. If G is a tree (has no cycles), then

bv(xL(v)) = pL(v)(xL(v))

After a finite number of steps. (In other words, the beliefs
converge to the exact desired local marginal probabilities. )

But what if G has cycles?



And Now, for Something Completely Different . . .



Some statistical physics

S

si

• S = {s1, . . . , sn} = n identical particles.
• “Spin” of si = xi ∈ A = {0, 1, . . . , q − 1}.
• E(x1, . . . , xn) = energy of state x = (x1, x2, . . . , xn).



(Helmholtz) Free Energy
S

si

• Partition function:

Z(β) =
∑

x∈An

e−βE(x), β = 1/T.

• Free energy:

F (β) = − 1
β

lnZ(β).

“All macroscopic thermodynamic properties follow from dif-
ferentiating the free energy.”
• We will take β = 1.



Variational Free Energy (β = 1)
S

si

• p(x) = Prob. of state x.
• Average energy: U =

∑
x∈An p(x)E(x).

• Entropy: H = −∑
x∈An p(x) ln p(x).

• Variational free energy:

F̃ (p) = U − H.



A Famous Theorem from Statistical Mechanics

Theorem.
F̃ (p) ≥ F,

with equality if and only if

p(x) = pB(x) =
1
Z

e−E(x),

the Boltzmann, or equilibrium, density.

Corollary.

F = min
p(x)

F̃ (p)

pB(x) = arg min
p(x)

F̃ (p).

• Suggests a method for computing F , but . . .



The “Mean Field” Approximation

FMF = min{F̃ (p) : p(x) = p1(x1)p2(x2) . . . pn(xn)}.

• In general, FMF > F , but . . .

• Feynman used this method successfully in 1955 in his pa-
per on the polaron.
• Its use by physicists is widespread
• Too crude for our purposes



Beyond the Mean Field:
The Bethe-Kikuchi Approximation to F̃ (p)

• Often E(x) decomposes:

x1 x2

x3x4

E(x1, x2, x3, x4) =
E1,2(x1, x2) + E2,3(x2, x3) + E3,4(x3, x4) + E1,4(x1, x4).

• In general,
E(x) =

∑

R∈R
ER(xR).



If E(x) decomposes, pB(x) factors

General E(x) =⇒ pB(x) =
1
Z

e−E(x)

E(x) =
∑

R∈R
ER(xR) =⇒ pB(x) =

1
Z

∏

R∈R
e−ER(xR)



If E(x) decomposes, pB(x) factors

General E(x) =⇒ pB(x) =
1
Z

e−E(x)

E(x) =
∑

R∈R
ER(xR) =⇒ pB(x) =

1
Z

∏

R∈R
e−ER(xR)

=
1
Z

∏

R∈R
αR(xR)



Assuming E(x) =
∑

R∈R ER(xR)

x1 x2

x3x4

F̃ (p) = U − H.

• In this case the average energy decomposes:

U =
∑

R

UR,

where
UR =

∑

xR

pR(xR)ER(xR).

E.g. U = U1,2 + U2,3 + U3,4 + U1,4.
Thus U depends only on the marginals pR(xR), and not on
the global p(x).



Assuming E(x) =
∑

R∈R ER(xR)

x1 x2

x3x4

• What about H(X1, . . . , Xn)? Does it depend only on the
marginals {pR(xR)}? NO, but . . .

Theorem. If G = (V, E, L) is a junction tree for R, then
at Boltzmann equilibrium (the global density):

H(X) =
∑

v∈V

H(Xv) −
∑

e∈E

H(Xe).



Example when there are cycles:
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3 41 4

1 3

4

A B

CD

H(X1, X2, X3, X4)
?=

H(X1, X2) + H(X2, X3) + H(X3, X4) + H(X1, X4)
−H(X1) − H(X2) − H(X3) − H(X4).

No, but it may be a good approximation. (In essence, this
is the BK approximation.)



The “Bethe-Kikuchi” Approximation to F̃ (p)
With Respect to a Junction Graph G = (V, E, L) for R

F̃BK(p) =
∑

v∈V

UL(v)(pv) −
(

∑

v∈V

H(pv) −
∑

e∈E

H(pe)

)

= F̃BK({pv, pe}).

• The BK approximation to the free energy:

FBK = min
{pv,pe}

F̃BK({pv, pe}) ≈ F

• The BK approximation to the optimizing “beliefs:”

{pBK
v , pBK

e } = arg min
{pv,pe}

F̃BK({pv, pe})



Example:
1 2 2 32

3 41 4
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4
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FBK = min
{pv,pe}

F̃BK({pv, pe}),

subject to: ∑

x2

p1,2(x1, x2) = p1(x1)

∑

x4

p1,4(x1, x4) = p1(x1)

...
∑

x1

p1(x1) = 1

...



The Main Result

Theorem. Given an instance BP on a junction graph
G = (V, E, L), define a corresponding “statistical mechanics
problem” via

ER(xR) = − log αR(xR).

Then if G is a tree, the unique fixed point {bv, be} of BP is

the unique global minimum of F̃BK (which is convex); and
if G has cycles,

Any fixed point of the BP algorithm is a station-
ary point∗ of F̃BK with respect to the same junction
graph, and vice-versa.

∗ Conjecturally, a local minimum if the fixed point is stable.



Proof:

• Set up a Lagrangian:

L = F̃BK({bv, be})

+
∑

(u,v)∈E

∑

xL(u,v)

λu,v(xL(u,v))




∑

xL(u)\L(u,v)

bv(xL(v)) − be(xL(u,v))





+
∑

v∈V

µv




∑

xL(v)

bv(xL(v)) − 1





+
∑

e∈E

µe




∑

xL(e)

be(xL(e)) − 1



 .



Proof:

• Set ∂L
∂bv(xL(v))

= 0:

log bv(xL(v)) = kv − EL(v)(xL(v)) −
∑

u∈N(v)

λv,u(xL(u,v))

• Set ∂L
∂be(xL(e))

= 0:

log be(xL(e)) = ke − λv,u(xL(e)) − λu,v(xL(e))



Proof:

• Now use the “translation”

Ev(xL(v)) = − lnαL(v)(xL(v))
λv,u(xL(v,u)) = − lnmu,v(xL(u,v)),

• With this translation, the stationarity conditions for F̃BK

are identical to the BP update rules.



Conclusions:

• Even when cycles are present, BP on a junction graph
does something “sensible.” (Beliefs converge to a station-
ary point of the BK approximations to the true marginal
probabilities.)

• If G is a tree, or has only one cycle, F̃BK is convex.

• The junction graph methodology suggests many variations
of BP for a given set of local kernels. (

∏n
i=1 mmi−2

i junction
graphs.)

• This may permit good BP decoding where conventional
BP fails (e.g. low-rate RA codes).


