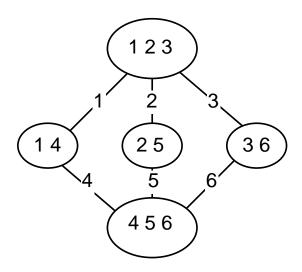
The Generalized Distributive Law and Free Energy Minimization

Srinivas M. Aji Rainfinity, Inc. Robert J. McEliece Caltech



Claude E. Shannon Symposium & Dedication University of California–San Diego October 16, 2001

A Big Tip of the Hat to:

Jonathan Yedidia, William Freeman, and Yair Weiss, the authors of

"Bethe Free Energy, Kikuchi Approximations, and Belief Propagation Algorithms,"

which inspired this paper.

Our Goals:

• To understand existing iterative (decoding or otherwise) algorithms better. In particular, what happens when there are cycles in the underlying graph?

• To use this understanding to design new and improved iterative algorithms.

A General Probabilistic Inference Problem

- Variables $\{x_1, \ldots, x_n\}, x_i \in A = \{0, 1, \ldots, q-1\}.$
- $\mathcal{R} = \{R_1, \dots, R_M\}$, a collection of subsets of $\{1, 2, \dots, n\}$.
- A set of nonnegative "local kernels" $\{\alpha_R(\boldsymbol{x}_R) : R \in \mathcal{R}\}.$
- Example: n = 4 and $\mathcal{R} = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}.$

$$\alpha_{\{1,2\}}(x_1, x_2) \ge 0$$

$$\alpha_{\{2,3\}}(x_2, x_3) \ge 0$$

$$\alpha_{\{3,4\}}(x_3, x_4) \ge 0$$

$$\alpha_{\{1,4\}}(x_1, x_4) \ge 0$$

A General Probabilistic Inference Problem

• Define the "global" probability density function;

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{R \in \mathcal{R}} \alpha_R(\boldsymbol{x}_R).$$

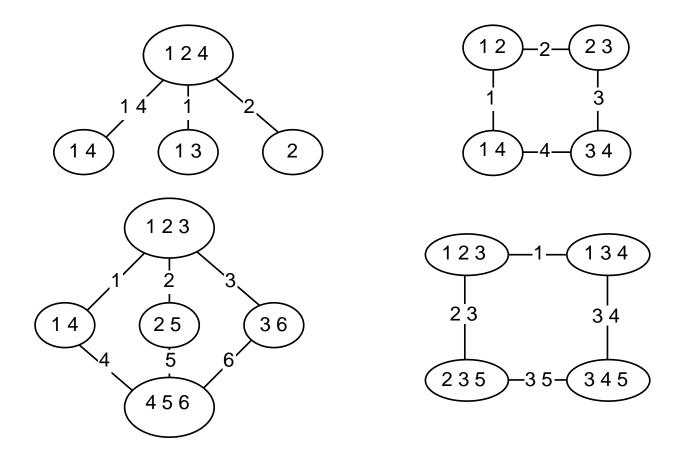
 $(Z = Global \ normalization \ constant).$

Problem: Compute, exactly or approximately, Z and some or all of the local marginal densities of the global density:

$$p_R(\boldsymbol{x}_R) = \sum_{\boldsymbol{x}_{R^c} \in A^{R^c}} p(\boldsymbol{x}), \quad \text{for } R \in \mathcal{R}$$

Solution: Belief Propagation on Junction Graphs

Junction Graphs G = (V, E, L).

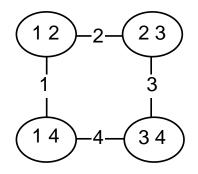


The subgraph induced by any index $i \in \{1, 2, ..., n\}$ is a **tree**.

Junction Graphs for Solving the Inference Problem

• A junction graph (V, E, L) is called a junction graph for \mathcal{R} if \mathcal{R} = the labels of V.

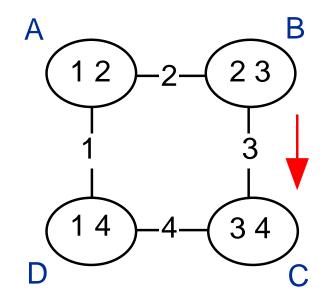
• Example:



is a junction graph for $\{\{1,2\},\{2,3\},\{3,4\},\{1,4\}\}.$

• It is always possible to find a junction graph (but not necessarily a junction tree) for \mathcal{R} .

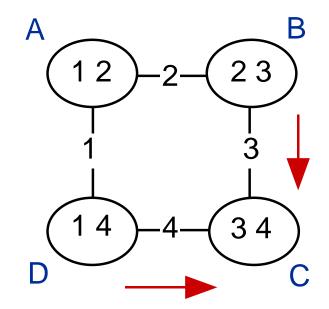
Belief Propagation on Junction Graphs: the GDL



Example message:

$$m_{B,C}(x_3) \leftarrow K \sum_{x_2} \alpha_{\{2,3\}}(x_2, x_3) m_{A,B}(x_2).$$

Belief Propagation on Junction Graphs



Example "belief" (approximate marginal density):

$$b_C(x_3, x_4) \leftarrow \frac{1}{Z_C} \alpha_{\{3,4\}}(x_3, x_4) m_{B,C}(x_3) m_{D,C}(x_4)$$

Belief Propagation on Junction Graphs

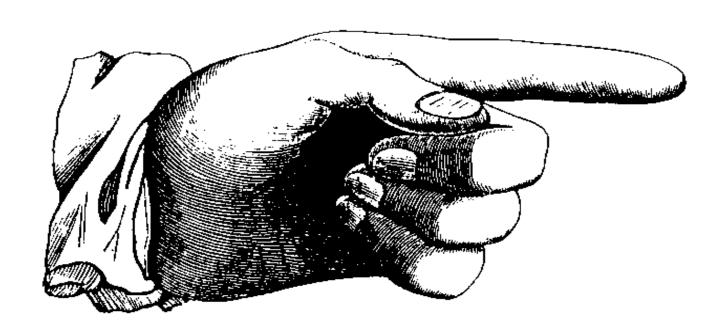
Theorem. If G is a tree (has no cycles), then

$$b_v(\boldsymbol{x}_{L(v)}) = p_{L(v)}(\boldsymbol{x}_{L(v)})$$

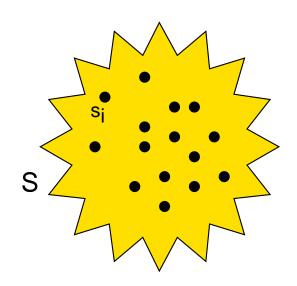
After a finite number of steps. (In other words, the beliefs converge to the exact desired local marginal probabilities.)

But what if G has cycles?

And Now, for Something Completely Different ...

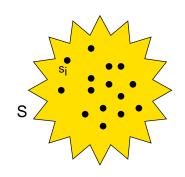


Some statistical physics



- $S = \{s_1, \ldots, s_n\} = n$ identical particles.
- "Spin" of $s_i = x_i \in A = \{0, 1, \dots, q 1\}$.
- $E(x_1,\ldots,x_n)$ = energy of state $\boldsymbol{x}=(x_1,x_2,\ldots,x_n)$.

(Helmholtz) Free Energy



• Partition function:

$$Z(\beta) = \sum_{\boldsymbol{x} \in A^n} e^{-\beta E(\boldsymbol{x})}, \qquad \beta = 1/T.$$

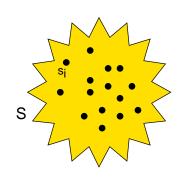
• Free energy:

$$F(\beta) = -\frac{1}{\beta} \ln Z(\beta).$$

"All macroscopic thermodynamic properties follow from differentiating the free energy."

• We will take $\beta = 1$.

Variational Free Energy ($\beta = 1$)



- p(x) = Prob. of state x.
- Average energy: $U = \sum_{\boldsymbol{x} \in A^n} p(\boldsymbol{x}) E(\boldsymbol{x})$.
- Entropy: $H = -\sum_{\boldsymbol{x} \in A^n} p(\boldsymbol{x}) \ln p(\boldsymbol{x})$.
- Variational free energy:

$$\widetilde{F}(p) = U - H.$$

A Famous Theorem from Statistical Mechanics

Theorem.

$$\widetilde{F}(p) \ge F$$
,

with equality if and only if

$$p(\boldsymbol{x}) = p^{B}(\boldsymbol{x}) = \frac{1}{Z}e^{-E(\boldsymbol{x})},$$

the Boltzmann, or equilibrium, density.

Corollary.

$$F = \min_{p(\boldsymbol{x})} \widetilde{F}(p)$$
$$p^{B}(\boldsymbol{x}) = \arg\min_{p(\boldsymbol{x})} \widetilde{F}(p).$$

• Suggests a method for computing F, but ...

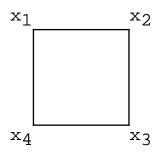
The "Mean Field" Approximation

$$F_{\text{MF}} = \min\{\widetilde{F}(p) : p(\mathbf{x}) = p_1(x_1)p_2(x_2)\dots p_n(x_n)\}.$$

- In general, $F_{\rm MF} > F$, but ...
- Feynman used this method successfully in 1955 in his paper on the polaron.
- Its use by physicists is widespread
- Too crude for our purposes

Beyond the Mean Field: The Bethe-Kikuchi Approximation to $\widetilde{F}(p)$

• Often E(x) decomposes:



$$E(x_1, x_2, x_3, x_4) = E_{1,2}(x_1, x_2) + E_{2,3}(x_2, x_3) + E_{3,4}(x_3, x_4) + E_{1,4}(x_1, x_4).$$

• In general,

$$E(\boldsymbol{x}) = \sum_{R \in \mathcal{R}} E_R(\boldsymbol{x}_R).$$

If $E(\mathbf{x})$ decomposes, $p^B(\mathbf{x})$ factors

General
$$E(\mathbf{x}) \Longrightarrow p^B(\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{x})}$$

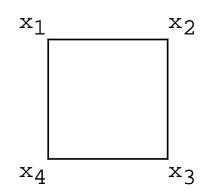
$$E(\boldsymbol{x}) = \sum_{R \in \mathcal{R}} E_R(\boldsymbol{x}_R) \Longrightarrow p^B(\boldsymbol{x}) = \frac{1}{Z} \prod_{R \in \mathcal{R}} e^{-E_R(\boldsymbol{x}_R)}$$

If E(x) decomposes, $p^B(x)$ factors

General
$$E(\mathbf{x}) \Longrightarrow p^B(\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{x})}$$

$$E(\boldsymbol{x}) = \sum_{R \in \mathcal{R}} E_R(\boldsymbol{x}_R) \Longrightarrow p^B(\boldsymbol{x}) = \frac{1}{Z} \prod_{R \in \mathcal{R}} e^{-E_R(\boldsymbol{x}_R)}$$
$$= \frac{1}{Z} \prod_{R \in \mathcal{R}} \alpha_R(\boldsymbol{x}_R)$$

Assuming $E(\mathbf{x}) = \sum_{R \in \mathcal{R}} E_R(\mathbf{x}_R)$



$$\widetilde{F}(p) = U - H.$$

• In this case the average energy decomposes:

$$U = \sum_{R} U_{R},$$

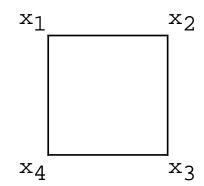
where

$$U_R = \sum_{\boldsymbol{x}_R} p_R(\boldsymbol{x}_R) E_R(\boldsymbol{x}_R).$$

E.g.
$$U = U_{1,2} + U_{2,3} + U_{3,4} + U_{1,4}$$
.

Thus U depends only on the marginals $p_R(\mathbf{x}_R)$, and not on the global $p(\mathbf{x})$.

Assuming $E(\mathbf{x}) = \sum_{R \in \mathcal{R}} E_R(\mathbf{x}_R)$

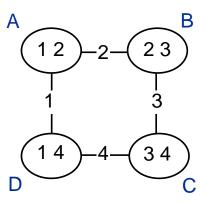


• What about $H(X_1, ..., X_n)$? Does it depend only on the marginals $\{p_R(\boldsymbol{x}_R)\}$? NO, but ...

Theorem. If G = (V, E, L) is a junction tree for \mathcal{R} , then at Boltzmann equilibrium (the global density):

$$H(\mathbf{X}) = \sum_{v \in V} H(\mathbf{X}_v) - \sum_{e \in E} H(\mathbf{X}_e).$$

Example when there are cycles:



$$H(X_1, X_2, X_3, X_4) \stackrel{?}{=}$$

$$H(X_1, X_2, X_3, X_4) + H(X_2, X_3) + H(X_3, X_4) + H(X_1, X_4)$$

$$-H(X_1) - H(X_2) - H(X_3) - H(X_4).$$

No, but it may be a good approximation. (In essence, this is the BK approximation.)

The "Bethe-Kikuchi" Approximation to $\widetilde{F}(p)$ With Respect to a Junction Graph G=(V,E,L) for $\mathcal R$

$$\widetilde{F}_{BK}(p) = \sum_{v \in V} U_{L(v)}(p_v) - \left(\sum_{v \in V} H(p_v) - \sum_{e \in E} H(p_e)\right)$$

$$= \widetilde{F}_{BK}(\{p_v, p_e\}).$$

• The BK approximation to the free energy:

$$F_{BK} = \min_{\{p_v, p_e\}} \widetilde{F}_{BK}(\{p_v, p_e\}) \approx F$$

• The BK approximation to the optimizing "beliefs:"

$$\{p_v^{BK}, p_e^{BK}\} = \arg\min_{\{p_v, p_e\}} \widetilde{F}_{BK}(\{p_v, p_e\})$$

Example:

$$F_{BK} = \min_{\{p_v, p_e\}} \widetilde{F}_{BK}(\{p_v, p_e\}),$$

subject to:

$$\sum_{x_2} p_{1,2}(x_1, x_2) = p_1(x_1)$$

$$\sum_{x_4} p_{1,4}(x_1, x_4) = p_1(x_1)$$

•

$$\sum_{x_1} p_1(x_1) = 1$$

•

The Main Result

Theorem. Given an instance BP on a junction graph G = (V, E, L), define a corresponding "statistical mechanics problem" via

$$E_R(\boldsymbol{x}_R) = -\log \alpha_R(\boldsymbol{x}_R).$$

Then if G is a tree, the unique fixed point $\{b_v, b_e\}$ of BP is the unique global minimum of \widetilde{F}_{BK} (which is convex); and if G has cycles,

Any fixed point of the BP algorithm is a stationary point* of \widetilde{F}_{BK} with respect to the same junction graph, and vice-versa.

* Conjecturally, a local minimum if the fixed point is stable.

Proof:

• Set up a Lagrangian:

$$\mathcal{L} = \widetilde{F}_{BK}(\{b_v, b_e\})$$

$$+ \sum_{(u,v)\in E} \sum_{\boldsymbol{x}_{L(u,v)}} \lambda_{u,v}(\boldsymbol{x}_{L(u,v)}) \left(\sum_{\boldsymbol{x}_{L(u)\setminus L(u,v)}} b_v(\boldsymbol{x}_{L(v)}) - b_e(\boldsymbol{x}_{L(u,v)})\right)$$

$$+ \sum_{v\in V} \mu_v \left(\sum_{\boldsymbol{x}_{L(v)}} b_v(\boldsymbol{x}_{L(v)}) - 1\right)$$

$$+ \sum_{e\in E} \mu_e \left(\sum_{\boldsymbol{x}_{L(e)}} b_e(\boldsymbol{x}_{L(e)}) - 1\right).$$

Proof:

• Set $\frac{\partial \mathcal{L}}{\partial b_v(\boldsymbol{x}_{L(v)})} = 0$:

$$\log b_v(\mathbf{x}_{L(v)}) = k_v - E_{L(v)}(\mathbf{x}_{L(v)}) - \sum_{u \in N(v)} \lambda_{v,u}(\mathbf{x}_{L(u,v)})$$

• Set $\frac{\partial \mathcal{L}}{\partial b_e(\boldsymbol{x}_{L(e)})} = 0$:

$$\log b_e(\boldsymbol{x}_{L(e)}) = k_e - \lambda_{v,u}(\boldsymbol{x}_{L(e)}) - \lambda_{u,v}(\boldsymbol{x}_{L(e)})$$

Proof:

• Now use the "translation"

$$E_v(\boldsymbol{x}_{L(v)}) = -\ln \alpha_{L(v)}(\boldsymbol{x}_{L(v)})$$
$$\lambda_{v,u}(\boldsymbol{x}_{L(v,u)}) = -\ln m_{u,v}(\boldsymbol{x}_{L(u,v)}),$$

 \bullet With this translation, the stationarity conditions for \widetilde{F}_{BK} are identical to the BP update rules. ullet

Conclusions:

- Even when cycles are present, BP on a junction graph does something "sensible." (Beliefs converge to a stationary point of the BK approximations to the true marginal probabilities.)
- If G is a tree, or has only one cycle, F_{BK} is convex.
- The junction graph methodology suggests many variations of BP for a given set of local kernels. $(\prod_{i=1}^n m_i^{m_i-2})$ junction graphs.)
- This may permit good BP decoding where conventional BP fails (e.g. low-rate RA codes).