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Biological networks, similar to many real-world networks, often have the so-called community struc-
tures, i.e., groups of bio-molecules that are highly associated among themselves, while having relatively
fewer and/or weak associations with the rest of the network. A community in a gene network often corre-
sponds to genes involved in the same biological process. For example, genes within the same community
of a protein-protein interaction (PPI) network often belong to some known protein complexes, while genes
within the same community of a metabolic network are often located on the same metabolic pathway. Iden-
tifying and analyzing communities, therefore, help us focus on the coarse-grained, high-level organizational
principles of biological networks rather than the functions of individual bio-molecules.

Recently, several algorithms have been developed to identify network communities based on the opti-
mization of an objective function called the modularity (Q). Empirical studies have shown that modularity
optimization is a very effective way to search for natural communities, without prior knowledge about the
number of communities and sizes of the communities. However, the optimization of Q is NP-hard, and
existing algorithms are often trapped by local optima. A simulated annealing approach has been previously
proposed, with impractical running time for large networks. The best algorithm so far in terms of both
efficiency and effectiveness is from Newman (Proc Natl Acad Sci USA, 103: 8577-8582, 2006), who first
proposed the Q function.

In this poster, we present an efficient heuristic algorithm, called Qcut, which can find higher Q values
than the Newman’s method on a large number of simulated and real networks. We also show that, for
many simulated networks, when the communities are not very small compared to the networks, higher Q
values indeed correspond to better community structures. Using standard measures, Qcut has achieved much
higher accuracy than the Newman’s method in recovering the known communities (e.g., 100% vs. 60%, and
90% vs. 40%), especially when the community structures are weak, i.e., when there are a large number of
inter-community edges.

On the other hand, when the community sizes are small, or when the networks have hierarchical com-
munity structures, we show that optimizing Q is not always a good strategy, since it often merges small
communities and ignores low-level sub-communities. The Q function uses a null model to estimate the
expected number of edges between two sub-networks, and partition them into two communities only if the
actual number of edges between them is smaller than expected. However, for two small communities, even
a single edge between them may seem unexpected by the null model. As a result, they cannot be separated
without reducing the Q value. To deal with this issue, we propose another algorithm, HQcut, which recur-
sively applies Qcut to each already identified community to search for sub-communities. To ensure that the
sub-community structures are genuine, we use Monte-Carlo test to estimate the statistical significance of the
partitions. Applied to a large number of simulated networks that contain both large and small communities,
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HQcut is able to recover all the embedded communities with very high accuracies, while the Newman’s
method often fails completely.

We have applied the Qcut algorithm to gene co-expression networks, and evaluated the communities
using Gene ontology (GO) annotations, ChIP-chip data, as well as PPI data. Compared to several popular
clustering algorithms, including k-means, self-organizing maps, and spectral clustering, the Qcut algorithm
can identify communities of genes that are statistically more enriched with common functional terms, are
more likely to be co-regulated, and more frequently interact among themselves physically. The results have
been submitted as a paper to the RECOMB Satellite Conferences on Systems Biology.

We have also applied the Qcut algorithm to a yeast protein-protein interaction network, and identified
∼100 protein communities. Using GO analysis, we find that most communities correspond to highly specific
functional modules. The community sizes range from 2 to ∼400, and approximately follow a power-law
distribution. Compared to the hand-curated known protein complexes in the MIPS database, the smaller
communities often match well with individual protein complexes, while the larger ones usually contain
several functionally related complexes in their entirety. With the HQcut algorithm, we are able to further
partition the larger communities into smaller sub-communities that have better correspondence in the MIPS
protein complexes database.

Finally, we have analyzed the yeast PPI communities identified by HQcut to study the relationships
between community roles and gene essentiality. Following Guimera & Nunes Amaral (Nature, 433:895-
900, 2005), we compute a participation index for each gene to measure how diverse its interaction partners
are distributed among different communities. Several studies have shown that the so-called hub genes, those
with a large number of interactions, are more likely to be essential to the cell’s viability. Surprisingly, we
find that the hub genes with intermediate participation indices, i.e., those whose interaction partners are
distributed among a small number of communities, have the highest possibility to be essential, even though
they are not the most connected in the network. On the other hand, the hub genes whose interaction partners
are mostly restricted within a single community or distributed among many communities are less likely to
be essential, but are still more frequently essential than the non-hub genes. We are currently exploring the
possible biological and alternative explanations for this phenomenon.
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