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Whv G R t? With this method, all genomes have to be represented in the alphabet of the same We used GenomeOrder to derive baculovirus phylogeny. In Figure 5, the unrooted

y bene hearrangement: genes such that each gene appears once and only once in each genome. Many clusters tree for 9 baculovirus genomes is shown, along with a comparison with a gene
As the availability of whole genome sequences has increased over the past contain multiple paralogous genes per genome, and cannot be used to determine sequence-based phylogenetic tree from Herniou 2001. These two trees largely
decade, the data has provided unprecedented insight into evolutionary relative gene ordering. agree. Figure 6 is a more complete tree of the baculovirus family, including several
relationships. Recent sequencing of complete genomes has led to an i : TR : new genomes recently sequenced.
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We chose baculoviridae as a test family because their evolutionary 2 o Try to break these Granuloviruses, MNPVs, and NPVs separate as expected. (b) A comparison with the
relationships are well studied and significant genome rearrangement has s A clusters up ohylogeny described in Herniou 2001. Our tree is on the left.
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To recover larger clusters, we employ a two-part heuristic algorithm that treats genes as Choristoneura fumiferana DEF MNPV
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To automate our analysis we developed a gener§I purppse genome vertices and their pairwise BLAST scores as edges described in Figure 3. Mamestra configurata NPV-A
phylogeny software package called GenomeOrder. Atits core is a clustering Agrotis segetum nucleopolyhedrovirus

and refinement algorithm tied to NCBI's BLASTCLUST, which identifies Frchopn sy 2 MNEY 5 eMNEY]
orthologous sets of single genes shared between all queried genomes. We e e ope o
then use the order of those shared genes to find whole genome

rearrangements and the associated phylogeny through the MGR package.
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Cluster orthologous genes algorithm. The algorithm is run iteratively on large subclusters that remain (blue). Figure 6. A phylogenetic tree of all available baculovirus genomes. The second
(BLASTCLUST) > iteration of GenomeOQOrder is shown in blue.
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Some clades within the tree will have the same order among these
conserved genes. These more closely related genomes are run again through
GenomeOrder in an iterative process, until no new clusters can be found.

Genome rearrangements were used to construct baculovirus phylogeny. Our
tree largely agrees with previous baculovirus studies that derived phyogeny
based on gene sequence. Our software has demonstrated itself to be accurate
in constructing phylogenetic relationships, and could also be useful in
constructing phylogeny of bacterial and mitochondrial genomes.
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