Functional Metagenomics to Capture the Soil Resistome

Jo Handelsman
University of Wisconsin-Madison
One Origin of Metagenomics: Communication in Microbial Communities

- Ecological roles of antibiotics in communities
- Antibiotics as signal molecules
- Proteins that interact with antibiotics and signals
- Discovery of antibiotics for human and agricultural use
Functional Metagenomics to Capture the Soil Resistome

- Functional anchor strategy
- Choice of function
- Choice of habitat and sites
- Antibiotic resistance determinants
- Conclusions and future directions
Where do functional anchors fit into metagenomics?

Sequence clones: choose randomly or based on a common feature
Doing Metagenomics with Functional Anchors

Unite expressed function with genomic analysis of uncultured microorganisms

1. Identify clones that express a shared function (the “functional anchor”)
2. Characterize genes responsible for function
3. Sequence active clones and assess phylogenetic, genomic, and physiological context for functional gene

Functional anchor–based metagenomics identifies genes whose functions could not have been predicted based on sequence.
Antibiotic Resistance As Functional Anchor

- Powerful selections
- Important medical and environmental issue
- Little known about soil resistome
- Little known about uncultured sources of antibiotic resistance
Reservoirs of antibiotic resistance

Human reservoir

Environmental reservoir

Agricultural reservoir
Information about antibiotic resistance genes in soil is scarce.

150 aminoglycoside resistance genes from GenBank were assigned to one of six categories based on their source.
Habitat for Metagenomic Analysis

Soil -- \(~5,000\) species based on 16S rRNA and statistical modeling

Genetic and chemical diversity much greater than that
West Madison Agricultural Research Station
Alaskan Microbial Observatory
Soil Description

![Soil Description Image]

Graph showing soil depth over Julian Day.
Metagenomic library construction

Collect soil

Extract DNA

Digest

Ligate into vector

Transform *E. coli*

Screen transformants
Soil Libraries

• Wisconsin Soil Metagenomic Libraries
 – 28,000 clones; inserts average 43 kb
 – ~ 1 Gb DNA

• Wisconsin Soil Metagenomic Libraries
 – 650,000 clones; inserts average 2 kb
 – ~ 1.3 Gb DNA

• Alaskan Soil Metagenomic Libraries –
 – 500,000 clones inserts 2 to 200 kb
 – ~ 10 Gb DNA
Functional Anchor Approach to the Soil Resistome

- Identify clones that express antibiotic resistance
- Fully sequence all of them
- Identify gene(s) responsible for activity
- Identify phylogenetically informative genes and conduct a genomic analysis
- Conduct a designed experiment: replicate, associate gene frequency with bacterial or human activity
Deduced amino acid sequences suggest three different aminoglycoside resistance types

Adapted from Kotra et al. 2000. *Antimicrobial Agents & Chemotherapy*
Selections for Antibiotic Resistance

Kanamycin Tetracycline Nalidixic Acid 10 aminoglycosides

13 unique clones from Wisconsin soil
One clone from Alaskan soil
Gene from Alaskan soil is a near match to the Wisconsin genes
Phylogenetic analysis

AAC(6') enzymes isolated from soil in Madison, WI, U.S.A.
Aminoglycoside Resistance Genes

- All new sequences, some diverge deeply from known genes
- Discovered two from screening libraries in *Agrobacterium*, not expressed in *E. coli*
- One of these has no significant sequence similarity to any gene in GENBANK
- Alaskan gene is close to Wisconsin cluster
β-Lactam antibiotics

Penicillin core
A. Penicillin G.
B-E. semi-synthetic β-lactam antibiotics.
B. Amoxicillin.
C. Ampicillin.
D. Carbenicillin.
E. Piperacillin.

Cephalosporin core
A2. Cefamandole.
A3. Cefotaxime.

Carbapenem core
B. R = imipenem.
Enzymatic Inactivation of β-lactams

Classes of β-lactamases
- A, C, and D = serine β-lactamases
- B = metallo-β-lactamases

Penicillin core

Cephalosporin core
• Small-insert libraries: 2- to 10-kb inserts

• Large-insert libraries: BAC (20 to 190-kb inserts)
 Fosmid (40-kb inserts)

• >739,061 clones

• >13.6 Gb = >2,472 E. coli genome equivalents
β-lactam Resistance in Small-insert Libraries

300,000 clones/2 Gb DNA

900,000 (3x coverage) selected on 8 antibiotics

Up to 250 colonies/antibiotic

Resolved duplicates

4 clones fully sequenced
β-lactam Resistance in Fosmid Libraries

Screened 13 Gb DNA
8 clones partially characterized
Resistant to either penicillins or cephalosporins

2 clones -- 35% amino acid identity/54% similarity to probable class A β-lactamase from *Gloeobacter violaceus*

3 clones -- No ORFs with recognizable β-lactamase (sequence incomplete)

2 clones -- Similarity to class B carbapenemase from *Elizabethkingia meningoseptica*

1 clone -- Similarity to class C β-lactamase from *Mycobacterium smegmatis*
Overcoming Roadblocks in Heterologous Expression
Acidobacteria

- Acidobacteria are ubiquitous but poorly characterized
- Few cultured isolates
- Represent between 15% and 35% of soil microorganisms (16S analysis) and 16% of community in Alaskan soil
Hypothesis

Expression of Acidobacteria genes is limited by the sigma factors available in E. coli

Strategy

Acidobacterium capsulatum major sigma factor RpoD (AcRpoD) in E. coli
Screening large-insert library with the *A. capsulatum* major sigma factor, RpoD present in clones

Steps:
1. **Retrofit AK21 library with AcRpoD**
2. **Select for β-lactam resistance**
 - screen 415,000 clones/β-lactam (~1.5X coverage)
 - 10,000 clones/plate
3. **Isolate AcRpoD-dependent resistant clones**
Screening β-lactam-resistant (R) clones for AcRpoD-dependent phenotype

Electrocure β-lactamR clones of pAcRpoD (TetR)

Confirm Tet⁵ phenotype
Confirm loss of Ac rpoD by PCR using AcRpoD-specific primers

Test β-lactam sensitivity
The resistance of 92 of the 248 clones is AcRpoD dependent
Future Directions

- Full-length sequencing and assembly of fosmid clones
- Characterization of novel proteins – enzymology and crystallography
- Study impact on soilborne antibiotic resistance genes of
 - streptomycin use in apple production
 - β-lactam use in dairy operations
Antibiotic Resistance
Conclusions

• A functional anchor approach to metagenomics reveals new members of known gene families and new types of resistance genes

• Heterologous gene expression can be enhanced by using a different host species or adding a sigma factor from a member of another bacterial phylum
The Dirty Dozen
(the soil group)

Christian Riesenfeld
Heather Allen
Zakee Sabree
Pat Schloss
Lynn Williamson
Jitsupang (Koy) Rodbumrer
Andra Gaarder
Lakita Hopkins
Kimura Nobutaka
Luke Moe
Brad Kasavana
Brad Borlee

Howard Hughes Medical Institute
National Institutes of Health
National Science Foundation
University of Wisconsin-Madison
Antibiotic Resistance in Wisconsin vs. Alaska

<table>
<thead>
<tr>
<th>Wisconsin</th>
<th>Alaska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>Pristine</td>
</tr>
<tr>
<td>Disturbed</td>
<td>undisturbed</td>
</tr>
<tr>
<td>Single freeze</td>
<td>Multiple freeze-thaw cycles</td>
</tr>
<tr>
<td>Maximum temp 16-20°C</td>
<td>Maximum temp 12°C</td>
</tr>
<tr>
<td>Stable environment</td>
<td>periodic river floods</td>
</tr>
</tbody>
</table>